Grammatical relations in Yakkha

Diana Schackow
MPI for Evolutionary Anthropology, Leipzig
schackow@eva.mpg.de

45th Annual Meeting of the SLE, Aug 29 – Sept 01 2012, Stockholm
Overview

1. **Introduction** (typological profile, methodology)

2. **Coding** properties:
 - case, agreement

3. **Behavioral** properties:
 - converbs, participant nominalization, control, raising, auxiliaries, detransitivization

4. **Summary** and discussion of the data
1 Introduction

- Sino-Tibetan > TB > Kiranti > Eastern Kiranti
- East Nepal
- 14.000 speakers
1 Typological profile

- SOV, head-final
- complex verbal morphology and morphophonology
- arguments are easily dropped
- diverse alignment types
- interaction of role- and reference-based alignment
1 Method, terminology

- Grammatical relations as restricted neutralizations of arguments
- Construction-specific
- GR conditioned by predicate classes, referential properties, construction type, clausal properties (Bickel 2010).
- What is compared: generalized semantic roles (GSR), determined w.r.t. particular predicates
2 Coding properties

- **Case:**
 - ERG =ŋa, with split along SAP/3rd person distinction.

 - No DAT/ACC case markers.

 - LOC =pe and INS =ŋa used to mark G and T of three-argument verbs.
2 Coding properties

- Case:
 Ergative =ŋa, split: no ERG on SAP-pronouns

(1a)

unŋ=ŋa kucuma mokt-wa=na
3sg=ERG dog[ABS] beat-NPST[3A>3P]=DECL.sg
“He beats the dog.”

(1b)

nda kucuma mokt-wa-ga=na
“You beat the dog.”
2 Coding properties

- **Agreement:**
 - intransitive and transitive paradigms
 - no uniform alignment

<table>
<thead>
<tr>
<th></th>
<th>INTRANSITIVE</th>
<th>TRANSITIVE</th>
<th>1SG</th>
<th>1NSG</th>
<th>2SG</th>
<th>2DU</th>
<th>2SG</th>
<th>3SG</th>
<th>3NSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SG</td>
<td>-η (=na)</td>
<td></td>
<td></td>
<td>-nen (=na)</td>
<td></td>
<td></td>
<td></td>
<td>-u-η (=na)</td>
<td>-u-η-ci-η (=ha)</td>
</tr>
<tr>
<td>1DU.EXCL</td>
<td>-η-ci-η (=ha)</td>
<td></td>
<td></td>
<td></td>
<td>-nen-cin (=ha)</td>
<td></td>
<td></td>
<td>-u-η-c-u-η (=na)</td>
<td>-u-η-c-u-η-ci-η (=ha)</td>
</tr>
<tr>
<td>1PL.EXCL</td>
<td>-i-η (=ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-nen-in (=ha)</td>
<td></td>
<td>-u-m-η (=na)</td>
<td>-u-m-ci-m-η (=ha)</td>
</tr>
<tr>
<td>1DU.INCL</td>
<td>-ci (=ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-u-c-u (=na)</td>
<td>-u-c-u-ci (=ha)</td>
</tr>
<tr>
<td>1PL.INCL</td>
<td>-i (=ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-u-m (=na)</td>
<td>-u-m-ci-m (=ha)</td>
</tr>
<tr>
<td>2SG</td>
<td>-ka (=na)</td>
<td>-η-ka (=na)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-u-ka (=na)</td>
</tr>
<tr>
<td>2DU</td>
<td>-ci-ka (=ha)</td>
<td></td>
<td></td>
<td></td>
<td>-ka (=ha)</td>
<td></td>
<td></td>
<td>-u-c-u-ka (=na)</td>
<td>-u-c-u-ci-ka (=ha)</td>
</tr>
<tr>
<td>2PL</td>
<td>-i-ka (=ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-u-m-ka (=na)</td>
<td>-u-m-ci-m-ka (=ha)</td>
</tr>
<tr>
<td>3SG</td>
<td>(=na)</td>
<td>-η (=na)</td>
<td></td>
<td></td>
<td>-ka (=na)</td>
<td></td>
<td></td>
<td></td>
<td>-u (=na)</td>
</tr>
<tr>
<td>3DU</td>
<td>-ci (=ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-ci-ka (=ha)</td>
<td></td>
<td>-u-c-u (=na)</td>
<td>-u-c-u-ci (=ha)</td>
</tr>
<tr>
<td>3PL</td>
<td>N- (=ha)-ci</td>
<td></td>
<td></td>
<td></td>
<td>-ka (=na)</td>
<td></td>
<td></td>
<td></td>
<td>N- -u (=na)</td>
</tr>
</tbody>
</table>
2 Coding properties

- **Alignment of single markers:**
 - `-ka „2“ (neutral, except 1>2)`

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- `ka „2“` indicates that the alignment is neutral, except for the case where 1 is aligned before 2.
2 Coding properties

- Alignment of single markers:
 - \(-\eta(a)\) „excl, 1sg“ (neutral, except 1>2)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Alignment of single markers:
 - \(-i\) „1/2pl.S“ & „2P“ (ergative for 2, except 1>2)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Historical forms (recent loss of 1nsg.P forms):
 - *-i „1/2pl.S/P“ (ergative)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Alignment of single markers:
 - \(-u \, "3P"\), \(-ci \, "3nsg.P"\) (accusative)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Alignment of single markers:

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td>(sg)</td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Alignment of single markers:
 \(-m \, ^{1/2}pl.A > 3.P\) (scenario-portmanteau)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Alignment of single markers:
 - *nen „1.A > 2.P“* (scenario-portmanteau)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- *ci „dual“ (mixed: acc./neutral/ref.-based)*

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Conditions:

 (any A >) 3P:
 accusative alignment (S/A)

 (any A >) 2P:
 neutral (3A), reference-based (1A, factor: number)

 (any A >) 1P:
 marker absent in trans. forms (loss of forms due to politeness strategy)
2 Coding properties

- Alignment of single markers (declarative clitic):
 - =na „sg“;
 - =ha „nsg“ (mixed: erg./ref.-based)

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Coding properties

- Alignment of single markers (declarative clitic):
 \(=na \text{ "sg"}; =ha \text{ "nsg"} \) (ergative/hierarchical)

- Conditions:

 1>2 and all forms with 1P: hierarchically aligned

 3>2 and all forms with 3P: ergatively aligned
2 Coding properties - summary

- Both the **alignment** and the **conditions** for the alignment of agreement are mixed
- Messy picture, but not unusual for Kiranti (Witzlack-Makarevich et al. 2011)
- No clear-cut distinctions, but **tendencies**
 - 3 – **accusative**
 - SAP – **ergative**, **reference-based**, **scenario-portmanteaus**, **neutral**
2 Coding properties - summary

- **Role-based conditions:**
 P is more salient than A (alignment more consistent across columns than across rows in the paradigms)

- **Reference-based conditions:**
 SAP vs. 3
 nsg vs. sg; pl vs. du vs. sg

- (animate/human vs. inanimate for case alternations, not discussed here)
3 Behavioral properties

- participant nominalizer/relativizer -khuba, only S/A:

(2a)
iskul khek-khuba (babu)
school go-NMLZ.S/A (boy)
“the boy who goes to school”

(2b)
 mok-khuba (babu)
 beat-NMLZ.S/A (boy)
 “the boy who beats up others”
3 Behavioral properties

- participant nominalizer/relativizer -wa, presumably only P (not many examples, though):

(3a)
\textit{eg-wa seula}
break-NMLZ.P grass
“the grass that is broken off”

(3b)
\textit{ni?-wa}
fry-NMLZ.P
“fried things”
3 Behavioral properties

- Converbs: e.g. *-san*, for simultaneous events with identical S/A arguments:

(4a)

[...] *ka-san* *por-a-khy-a=na*

[...] say-CVB topple.over-PST-V2.go-PST=DECL.sg

“It (the pillar) said [...] and toppled over.”

(4b)

pan-pan=be *nak-san* *khe?-ma*

house-house=LOC beg-CVB go-INF[DEONT]

“One has to go from house to house, begging.”
3 Behavioral properties

- Any S/A is selected, also non-canonically marked S/A: e.g. **possessive of experience**, locative possessors etc.

(5a)

```
o-pomma  kes-san\  kam  cog-wa
3sg-laziness  come.up-CVB  work  do-NPST[3A>3P]
```

“He does the work lazily.”

(5b)

```
o-pomma  kek-khuba  babu
3sg.POSS-laziness  come.up-NMLZ.S/A  boy
```

“a lazy fellow”
3 Behavioral properties

- **Double agreement** in finite complements (perception/cognition verbs): embedded S/A triggers object agreement in matrix verb

(6a)

\[
\text{ta-ya-ga}=\text{na} \quad \text{ni-nen}=\text{na}
\]

\text{come-PST-2.S=NMLZ.sg} \quad \text{see-1>2=DECL.sg}

“\text{I saw that you came.}”

(6b)

\[
\text{cuwa} \quad \text{unj-wa-ga} \quad \text{lo?a} \quad \text{em-me?-nen}=\text{na}
\]

\text{beer} \quad \text{drink-NPST-2.A} \quad \text{like} \quad \text{perceive-NPST-1>2=DECL.sg}

“\text{To me it seems that you drink beer.}”
3 Behavioral properties

- Infinitive-complement taking verbs: *kaŋma* „conform, comply, agree, be willing“
- Matrix S controls embedded S/P
3 Behavioral properties

- only S and P trigger agreement in matrix verb

 (7a)

 na picha im-ma \(\eta \)-gaks-a-n=na
 this child sleep-INF NEG-agree-PST[3sg.S]-NEG=DECL.sg
 “This child was not willing to sleep.”

 (7b)

 pik cuʔ-\(\text{ma} \) \(\eta \)-gaks-a-n=hoŋ, ...
 cow pierce-INF NEG-agree-PST[3sg.S]-NEG=SEQ
 “As the cow was not willing to be pierced, ...”

- no universal, semantically conditioned and syntactically reflected category of „subject“ (as e.g. in Dixon 1998)
3 Behavioral properties

- Deontic modality, agreement of auxiliary (copula) local scenarios (SAP>SAP): $\mathbf{S=P}$

(8a)

\begin{center}
\begin{tabular}{ccc}
 ka & kheʔ-\textit{ma} & \textit{n}an \\
 1sg & go-INF & COP.AUX.1sg \\
\end{tabular}
\end{center}

“I have to go.”
3 Behavioral properties

- Deontic modality, agreement of auxiliary (copula) local scenarios (SAP>SAP): $S=P$

(8b)

$ka \quad nda \quad soʔ-\text{ma} \quad gan$

1sg 2sg watch-INF COP.AUX.2sg

“I have to watch you.”

(8c)

$nda \quad ka \quad soʔ-\text{ma} \quad \eta\text{nan}$

2sg 1sg watch-INF COP.AUX.1sg

“You have to watch me.”
3 Behavioral properties

- **Deontic** modality, infinitive and auxiliary (copula) **mixed** scenarios (SAP<>3): SAP

(9a)

```
ka   uṉci   soʔ-ma   ŋan
1sg  3nsg  watch-INF  COP.1sg
```

“I have to watch them.”

(9b)

```
uṉ=ŋa   nda   soʔ-ma   gan
3sg=ERG  2sg  watch-INF  COP.2sg
```

“He has to watch you.”
3 Behavioral properties

- Imperfective auxiliary, only 1/2 P arguments trigger agreement:

(10a)

\[ka \ uŋ \ thim-ma \ sim-me-ŋ=na \]

1sg 3sg scold-INF IPFV.AUX-NPST-1sg.S=DECL.sg

“I am scolding him.”

(10b)

\[aphu=ŋa \ nda \ thim-ma \ sim-me-ka=na \]

e.brother=ERG 2sg scold-INF IPFV.AUX[3A]-2P=DECL.sg

“My elder brother is scolding you.”
3 Behavioral properties

- Detransitivization: neutralization of A and P

- No overt marker, just intransitive inflection
 Passive:
 demotion of A, promotion of P/T/G,
 Antipassive:
 demotion of P/T/G, A retained
3 Behavioral properties

- Detransitivization, e.g. *khemma* „listen/hear“:

(11a)

* dilu radio khem-me?=na *

Dilu radio listen-NPST[3sg.S]=DECL.sg

“Dilu listens to the radio (usually).”

(11b)

* ten=be dhol(=ci) η-khem-me=ha(=ci) *

village=LOC drum(=NSG) 3pl.S-hear-NPST=DECL.nsg(=nsg)

“In the village the drums were heard/audible.”
Summary

<table>
<thead>
<tr>
<th>Construction</th>
<th>GR</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreement</td>
<td>heterogenous</td>
<td>role-based; ref.-based</td>
</tr>
<tr>
<td>Case</td>
<td>{A} {S, P}</td>
<td>role-based, ERG (ref-b. split)</td>
</tr>
<tr>
<td>CVB -san</td>
<td>{S, A} {P}</td>
<td>role-based, ACC</td>
</tr>
<tr>
<td>NMLZ -khuba, -wa</td>
<td>{S, A} {P}</td>
<td>role-based, ACC</td>
</tr>
<tr>
<td>Raising (perception verbs)</td>
<td>{S, A} {P}</td>
<td>role-based, ACC</td>
</tr>
<tr>
<td>Control (“be willing”)</td>
<td>{A} {S, P}</td>
<td>role-based, ERG</td>
</tr>
<tr>
<td>Auxiliaries (“have to”)</td>
<td>{A} {S, P} or SAP</td>
<td>role-based, ERG; ref.-based</td>
</tr>
<tr>
<td>Auxiliaries (“IPFV”)</td>
<td>{S, A} and {P.1/2}</td>
<td>role-based, ACC; ref.-based</td>
</tr>
<tr>
<td>Detransitivization</td>
<td>{A, P}</td>
<td>role-based, A=P</td>
</tr>
</tbody>
</table>

Furthermore (not discussed here):

| Agreement and case alternations (three-participant verbs) | {1/2} {anim/hum} | ref.-based |
4 Summary

- Most heterogenous: agreement & case
 both reference-based and role-based GR

- reference: 2/SAP salience, nsg > sg
 \[\rightarrow\] independent hierarchies
 \[\rightarrow\] relevance of scenarios (i.e., of co-arguments)

- role:
 \[\rightarrow\] P salience in in conditions on split alignment
 \[\rightarrow\] 3rd person accusative, against predictions of RH (cf. also Bickel 2008)
4 Summary

- **Syntax:**
 - many pivots (ACC, ERG, 1/2, A=P)
 → both role- and reference-based GR (the latter being limited to constructions involving agreement)
 → furthermore: several constructions without GR (finite subordination types, relativization)
 → no dominant alignment type in Yakkha
5 References

